1032 字
5 分钟
训练步骤

1. 获取数据集#

1.1. 下载数据集#

首先下载数据集、验证hash数据、并保存在本地文件中。

import hashlib
import os
import tarfile
import zipfile
import requests # 下载
DATA_HUB = dict() # DATA_HUB的元素为url和hash组成的键值对
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
# 从指定的url下载数据,并验证哈希函数,存储到../data/文件名 中。
def download_data(name, cache_dir=os.path.join('..', 'data')):
assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
url, sha1_hash = DATA_HUB[name]
os.makedirs(cache_dir, exist_ok=True)
fname = os.path.join(cache_dir, url.split('/')[-1]) # 拼接文件存储的相对路劲
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash:
return fname
print(f'正在从{url}下载{fname}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:
f.write(r.content)
return fname
# 下载文件,并且解压缩
def download_extract(name, folder=None):
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.tar', '.gz'):
fp = tarfile.open(fname, 'r')
else:
assert False, '只有zip和tar,gz文件可以被解压缩'
fp.extractall(base_dir) # 解压到base_dir
return os.path.join(base_dir, folder) if folder else data_dir
def download_all():
for name in DATA_HUB:
download_data(name)

1.2. 读取数据集#

%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
DATA_HUB['kaggle_house_train'] = (DATA_URL + 'kaggle_house_pred_train.csv',
'585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = (DATA_URL + 'kaggle_house_pred_test.csv',
'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
train_data = pd.read_csv(download_data('kaggle_house_train'))
test_data = pd.read_csv(download_data('kaggle_house_test'))
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4,[0,1,2,3,4,-4,-3,-2,-1]])
print(test_data.iloc[0:4,[0,1,2,3,4,-4,-3,-2,-1]])

2. 数据预处理#

对数据切片处理、处理离散值、将数据归一化、补充数据缺失值。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
print(all_features.iloc[[0,1,2,3,4,-4,-3,-2,-1], [0,1,2,3,4,-4,-3,-2,-1]])

2.1. 数据处理并归一化#

# 获取数字类型特征的下标
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
print(numeric_features)
# 将每个特征的数据,进行归一化操作
all_features[numeric_features] = all_features[numeric_features].apply(
lambda x : (x - x.mean()) / (x.std())
)
# 处理离散值
all_features = pd.get_dummies(all_features, dummy_na=True)
print(all_features.shape)
print(all_features.iloc[0:5, :])
# 将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)
print(all_features[numeric_features])
# 将训练数据和测试数据分开
n_train = train_data.shape[0]
# 前n_train个为训练数据,后面的我测试数据
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(
train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32
)

2.2. 补充缺失值#

3. 训练#

创建基线性模型、损失函数优化方法(Adam优化)、训练策略(K-fold交叉训练)。

每一层都使用一个基本的线性模型。

3.1. 创建基线性模型#

loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
net = nn.Sequential(nn.Linear(in_features, 1))
return net

3.2. 确定损失函数#

def log_rmse(net, features, labels):
clipped_preds = torch.clamp(net(features), 1, float('inf'))
rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
return rmse.item()

3.3. 编写单轮训练函数#

def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k # 整除k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size) # slice切片对象
X_part, y_part = X[idx, :], y[idx] # idx用于切片
if j == i: # _valid用于返回第i折的数据
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0) # 将两个张量在第0维拼接
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
# 获取单折的数据
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
# ls用于存放,每一折训练的结果
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
# 计算训练结果的sum
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
# 挥着epoch和ls中对应的数据
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
legend=['train', 'valid'], yscale='log')
print(f'折{i + 1}, 训练log rmse{float(train_ls[-1]):f}, '
f'验证 log rmse{float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k

3.4. 使用k-fold交叉验证#

def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
# 使用Adam优化器
optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate, weight_decay=weight_decay)
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad() # 清空梯度
l = loss(net(X), y) # 确定损失
l.backward() # 求导
optimizer.step() # 继续迭代
train_ls.append(log_rmse(net, train_features, train_labels)) # 记录结果
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls

3.5. 实际训练#

k = 5
num_epochs = 100
lr = 5
weight_decay = 0
batch_size = 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs,
lr, weight_decay, batch_size)
print(f'{k}-折验证:平均训练log rmse:{float(train_l):f},'
f'平均训练log rmse:{float(valid_l):f}')

4. 预测#

使用测试集的数据,对训练好的模型进行预测,对比生成的损失。

def train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
print(f'训练log rmse:{float(train_ls[-1]):f}')
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size)