1032 字
5 分钟
训练步骤
1. 获取数据集
1.1. 下载数据集
首先下载数据集、验证hash数据、并保存在本地文件中。
import hashlibimport osimport tarfileimport zipfileimport requests # 下载
DATA_HUB = dict() # DATA_HUB的元素为url和hash组成的键值对DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
# 从指定的url下载数据,并验证哈希函数,存储到../data/文件名 中。def download_data(name, cache_dir=os.path.join('..', 'data')): assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}" url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) fname = os.path.join(cache_dir, url.split('/')[-1]) # 拼接文件存储的相对路劲 if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if sha1.hexdigest() == sha1_hash: return fname print(f'正在从{url}下载{fname}...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname
# 下载文件,并且解压缩def download_extract(name, folder=None): fname = download(name) base_dir = os.path.dirname(fname) data_dir, ext = os.path.splitext(fname) if ext == '.zip': fp = zipfile.ZipFile(fname, 'r') elif ext in ('.tar', '.gz'): fp = tarfile.open(fname, 'r') else: assert False, '只有zip和tar,gz文件可以被解压缩' fp.extractall(base_dir) # 解压到base_dir return os.path.join(base_dir, folder) if folder else data_dir
def download_all(): for name in DATA_HUB: download_data(name)
1.2. 读取数据集
%matplotlib inlineimport numpy as npimport pandas as pdimport torchfrom torch import nnfrom d2l import torch as d2l
DATA_HUB['kaggle_house_train'] = (DATA_URL + 'kaggle_house_pred_train.csv', '585e9cc93e70b39160e7921475f9bcd7d31219ce')DATA_HUB['kaggle_house_test'] = (DATA_URL + 'kaggle_house_pred_test.csv', 'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
train_data = pd.read_csv(download_data('kaggle_house_train'))test_data = pd.read_csv(download_data('kaggle_house_test'))
print(train_data.shape)print(test_data.shape)
print(train_data.iloc[0:4,[0,1,2,3,4,-4,-3,-2,-1]])print(test_data.iloc[0:4,[0,1,2,3,4,-4,-3,-2,-1]])
2. 数据预处理
对数据切片处理、处理离散值、将数据归一化、补充数据缺失值。
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))print(all_features.iloc[[0,1,2,3,4,-4,-3,-2,-1], [0,1,2,3,4,-4,-3,-2,-1]])
2.1. 数据处理并归一化
# 获取数字类型特征的下标numeric_features = all_features.dtypes[all_features.dtypes != 'object'].indexprint(numeric_features)
# 将每个特征的数据,进行归一化操作all_features[numeric_features] = all_features[numeric_features].apply( lambda x : (x - x.mean()) / (x.std()))
# 处理离散值all_features = pd.get_dummies(all_features, dummy_na=True)print(all_features.shape)print(all_features.iloc[0:5, :])
# 将缺失值设置为0all_features[numeric_features] = all_features[numeric_features].fillna(0)print(all_features[numeric_features])
# 将训练数据和测试数据分开n_train = train_data.shape[0]# 前n_train个为训练数据,后面的我测试数据train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)train_labels = torch.tensor( train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
2.2. 补充缺失值
3. 训练
创建基线性模型、损失函数优化方法(Adam优化)、训练策略(K-fold交叉训练)。
每一层都使用一个基本的线性模型。
3.1. 创建基线性模型
loss = nn.MSELoss()in_features = train_features.shape[1]
def get_net(): net = nn.Sequential(nn.Linear(in_features, 1)) return net
3.2. 确定损失函数
def log_rmse(net, features, labels): clipped_preds = torch.clamp(net(features), 1, float('inf')) rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels))) return rmse.item()
3.3. 编写单轮训练函数
def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k # 整除k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) # slice切片对象 X_part, y_part = X[idx, :], y[idx] # idx用于切片 if j == i: # _valid用于返回第i折的数据 X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat([X_train, X_part], 0) # 将两个张量在第0维拼接 y_train = torch.cat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size): train_l_sum, valid_l_sum = 0, 0 for i in range(k): # 获取单折的数据 data = get_k_fold_data(k, i, X_train, y_train) net = get_net() # ls用于存放,每一折训练的结果 train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size) # 计算训练结果的sum train_l_sum += train_ls[-1] valid_l_sum += valid_ls[-1] # 挥着epoch和ls中对应的数据 if i == 0: d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls], xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs], legend=['train', 'valid'], yscale='log') print(f'折{i + 1}, 训练log rmse{float(train_ls[-1]):f}, ' f'验证 log rmse{float(valid_ls[-1]):f}') return train_l_sum / k, valid_l_sum / k
3.4. 使用k-fold交叉验证
def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) # 使用Adam优化器 optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate, weight_decay=weight_decay) for epoch in range(num_epochs): for X, y in train_iter: optimizer.zero_grad() # 清空梯度 l = loss(net(X), y) # 确定损失 l.backward() # 求导 optimizer.step() # 继续迭代 train_ls.append(log_rmse(net, train_features, train_labels)) # 记录结果 if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls
3.5. 实际训练
k = 5num_epochs = 100lr = 5weight_decay = 0batch_size = 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)print(f'{k}-折验证:平均训练log rmse:{float(train_l):f},' f'平均训练log rmse:{float(valid_l):f}')
4. 预测
使用测试集的数据,对训练好的模型进行预测,对比生成的损失。
def train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size): net = get_net() train_ls, _ = train(net, train_features, train_labels, None, None, num_epochs, lr, weight_decay, batch_size) d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch', ylabel='log rmse', xlim=[1, num_epochs], yscale='log') print(f'训练log rmse:{float(train_ls[-1]):f}') preds = net(test_features).detach().numpy() test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)